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Abstract:  

Two charged dust particles inside a cloud of 

charges are considered as Debye atoms forming a 

Debye molecule. Cassini coordinates are used for 

the numerical solution of the Poisson-Boltzmann 

equation for the charged cloud. The electric force 

acting on a dust particle by the other dust particle 

was determined by integrating the electrostatic 

pressure on the surface of the dust particle. It is 

shown that attractive forces appear when the 

following two conditions are sates ed. First, the 

average distance between dust particles should be 

approximately equal to two Debye radii. Second, 

attraction takes place when similar charges are 

concentrated predominantly on the dust particles. If 

the particles carry a small fraction of total charge of 

the same polarity, repulsion between the particles 

takes place at all distances. We apply our results to 

the experiments with eremomycin plasma and to 

the experiments with nuclear-pumped plasma. ®c 
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Introduction 

The study of a plasma in which charged particles of 

micrometre size play a Signiant role (so-called dust 

plasma) is interesting from the fundamental and 

applied points of view [16]. Of special interest is 

the observation of collective elects caused by dust 

coupling. A number of experiments show that 

micron size particles can form spatial-ordered 

structures in eremomycin plasma [3] in gas-

discharge plasma and in nuclear-pumped plasma 

[4]. The properties of strong-coupled plasma are 

often considered in the framework of the so-called 

one-component model (see, for example, the 

review by [10]. According to this model, one of the 

charged components is treated as homogeneous in 

space. Polarization elects are taken into account in 

the form of corrections, in some cases. Apparently, 

the physics of processes occurring in dust plasma 

divers from the onecomponent model. A dust 

particle surrounded by a shell (or cloud) of charges 

(with masses much smaller than the mass of the 

dust particle) should be object of detailed 

consideration, ¯rest of all. A charged dust particle 

surrounded by a cloud of charges of the opposite 

sign is an analogue of an atom in gas kinetics. In 

general, the charged cloud of such a \dust atom" 

may not be in thermodynamic equilibrium. 

However, we shall consider here the situation in 

which the charges in a cloud are Boltzmann-

distributed. It is natural to call such a dust atom a 

Debye atom [15] in contrast to a Thomas-Fermi 

atom, in which a charged cloud is a degenerate 

electronic gas. Similarly, we can introduce the 

concept of a Debye molecule [17] and a Debye 

crystal. The Boltzmann distribution and the Poisson 

equation (that is, the Poisson-Boltzmann equation) 

describe mathematically the properties of such 

Debye systems. It is natural to assume the presence 

of attractive forces caused by polarization of the 

charge shells of Debye atoms. However, reliable 

theoretical results demonstrating an attraction of 

Debye atoms do not yet exist.  

The exact solution of the Poisson-Boltzmann 

equation shows that the repulsion always takes 

place for the charged planes both in an electron 

cloud and in a plasma [2], [20]. Numerical 

simulation of Debye atoms interaction [17] were 

not quite reliable, as were the results of analytical 

calculations [5], [11]. The problem of particle 

interactions in dusty plasma is similar to the 

problem of colloidal particle interactions in 

electrolytes. The very concept of a Debye radius 

for plasmas was borrowed from the theory of 

electrolytes. The physics of colloid particle 

interactions in electrolytes has been investigated for 

a long time (see, for example, [2]. Until now, 

however, the problem of attraction forces has not 

been solved, at least for the case in which the 

colloid particle radius is smaller than the Debye 

radius. Below, we attempt to reliably demonstrate 

the existence of polarization forces of attraction 

between Debye atoms and to determine the 

conditions under which attraction appears. This 

work divers essentially from other publications 

devoted to an analysis of charged dust particle 

interactions in plasmas and in electrolytes (see, for 

example, [1], [13] and [14]). First, in contrast to a 
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number of publications, we consider a situation in 

which the total charge of dust particles is not 

negligibly small compared with the total charge of 

the cloud particles of one sign. Moreover, we show 

here that the essential attraction takes place in an 

opposite limiting case, that is, when almost all the 

charge of one of sign is concentrated on dust 

particles, and the clouds consist of charges of only 

one (opposite) sign. (See [7-9] for preliminary 

results.) Second, based on Debye molecule 

properties, a Debye atom has denoted structure. 

The Debye atom has a core of a charged cloud 

close to the surface of a dust particle, when a dust 

particle has a high charge. In particular, the charge 

of a dust particle cannot, as a rule, be considered as 

an approximate delta function, even if its radius is 

much smaller 

than the Debye radius. Third, we calculate directly 

the resulting force on the dust particle from another 

particle and the charged cloud. The dependence of 

the potential energy of interaction on dust particle 

separation is calculated by integration of this force. 

In our case, the Poisson-Boltzmann equation is 

solved in an infrequently used coordinate system 

based on Cassini ovals. It allows a highly accurate 

calculation of an electric ¯eld near a small particle 

surface and reliably obtains the force of a particle 

interaction. We apply our results to eremomycin 

plasma and to nuclear pumped plasma. 

Formulation of the problem 

For the sake of denizens, we shall consider 

eremomycin plasma, and speak about positively 

charged dust particles and the electronic cloud of a 

dust particle. However, basic results are also of use 

for dust plasma produced by the electrical 

discharge and for plasma ionized by an external 

source of hard radiation, when the particles are 

charged negatively, and the charged cloud consists 

mainly of positive ions. We discuss the nuclear 

pumped dust plasma below. So, let us consider the 

case in which an electronic gas surrounding the 

charged dust particles is formed by the emission of 

electrons from dust particles at succulently high 

temperature T. In addition, the dust particles are 

surrounded by a partially ionized gas. In order to 

¯Nd the spatial distribution of the potential Á, the 

¯eld intensity ¡ ran, and the charge density ½ = e 

(Ni ¡ Ne), we must solve the Poisson equation r (¡ 

ran) = 4¼½. The ions and electrons densities (Ni 

and Ne) appearing in this equation are determined 

by the Boltzmann distribution Ni = Ni0 exp (¡ 

Á=T) and Ne = Ne0 exp(ea.=T), where Ni0 and 

Ne0 are the ion and electron densities at the points 

of zero potential. Thus, the Poisson-Boltzmann 

equation takes the form: 

 

Dimensionless variables: 

We shall measure length in units of Debye radius 

rd. = (T=4¼e 2Ne0) 1=2 corresponding to electron 

density in points of zero potential. We use the 

dimensionless potential’, electric ¯eld intensity E, 

and electronic density ne: 

Here ± = Ni0=Ne0 is the parameter describing the 

additional ionization of gas. Since the plasma is 

quasi-neutral, one has 0 µ ± µ 1. For further 

estimations, we shall be guided by the experiments 

of [3], in which Ne0 = 2:5 ¢ 1010cm¡3 and T = 

0:146eV = 1700K. For characteristic values we 

have rd. = 18 microns, T=e = 0:146V, and T=herd 

= 80V=cm. The average radius of a dust particle 

was rap = 0:4 microns (r0 ² rap=rd. = 2:23 ¢ 10¡2) 

and its charge was Ze = 500e. So, we have a ¯eld 

intensity on a particle surface Ze=r2 0 = 4:5 ¢ 

104V=cm (E0 = E(r0) = 550). 

Boundary conditions: 

We will use the term \Debye atom" for a single 

charged dust particle surrounded by a cloud of 

lighter charges in thermodynamic equilibrium; two 

or more dust particles will be referred to as a Debye 

molecule. Formally, the analyses of a Debye atom 

and a Debye molecule diver only in the geometry 

of the problem. While analysing a Debye atom, we 

can get by with the solution of the one-dimensional 

Poisson equation, assuming that the electron cloud 

is spherically symmetric. In an analysis of a 

diatomic Debye molecule, we can assume that the 

problem is symmetric about the x-axis connecting 

the nuclei (dust particles). Therefore, it is enough to 

consider the two-dimensional Eq. 3 in plane 

coordinates (x, y). When analysing a Debye 

molecule, the problem is complicated considerably 

by the choice of boundary conditions. In a real 

physical problem, the charge Ze of a dust particle 

and its radius rap are species. Hence, one boundary 

condition is the ¯eld intensity on the surface of dust 

particles S: 

 

The zero-¯eld intensity on the Debye atom or 

molecular boundary follows from quasineutrality of 

the system of charges. The basic purpose of Debye 
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molecule consideration is to ¯Nd resulting 

dependence of the particles’ interaction force on 

the distance d between particles. In this case, it is 

more convenient to use other boundary conditions 

instead of Eq. 4, that is, to set a constant potential 

on a surface of dust particles, 

One can get the ¯eld intensity E0 on a surface of a 

dust particle by solving the PoissonBoltzmann 

equation. The calculations with deferent values of 

’0 give the necessary value of E0 and charge value 

z p (Eq. 5). The resulting force of interaction of the 

dust particles is determined by integration of the 

electrostatic pressure on a surface of a dust particle. 

In one case the force is directed along an axis x, 

and its projection is determined by the expression 

 

Here ds is a projection of surface element ds on an 

axis x; the force F is connected to dimensionless 

force f by the expression F = (T 2/8¼e 2) ¢f; the 

electric pressure is directed along the outward 

normal to the surface of dust particles. 

Some properties of Debye atoms: 

The properties of a Debye molecule in some 

aspects are denied by properties of the Debye 

atoms forming this molecule. Therefore, we shall 

consider some properties of Debye atoms before 

beginning calculation of the force of dust particles 

interaction. In the one-dimensional (that is, planar, 

cylindrically symmetric, or spherically seemmetric) 

case, equation (3) and boundary conditions take the 

for 

 

Here k = 0, 1, and 2 respectively for planar, 

cylindrically symmetric, and spherically symmetric 

cases; r = 0 corresponds to the beginning of a 

planar layer, centre of the cylinder, or centre of the 

sphere. One boundary condition sets the boundary 

of the Debye atom r = a0, on which the ¯eld is 

equal to zero. The spherically symmetric case (k = 

2) simulating a Debye atom and the °at case (k = 

0), which allows us to study the potential variation 

near a dust particle surface, will be considered. In a 

spherically symmetric case, the convenient 

characteristic of a Debye atom is the dimensionless 

charge distribution (charge contained inside a 

sphere of radius r); it is denned by the expression 

z(r) = r 2E(r). 

Debye atom in a single-sign charge 

cloud 

The case ± = 0, in which the charged cloud consists 

of particles of one sign, corespends, for example, to 

an eremomycin plasma [3] or a similar gas 

ionization process, in which the charges of one sign 

have completely concentrated on the dust particles 

[19]. Size a0 we choose equal to half of the average 

distance between dust particles a 0= 40 V.A. 

Rudenko, S.I. Yakovenko / Central European 

Journal of Physics 2(1) 2004 35{66 a p/r D ² (N 

¡1=3 p /2r D), where N p is the density of dust 

particles (see Figure 1). The size a p ²N ¡1=3 p /2 is 

24% less than the Wigner-Zeitz radius: r WZ ² 

(4¼N p/3) ¡1=3. Consider the most interesting 

situation, when a dust particle radius r p is much 

less than the distance between dust particles r 0= r 

p/r D ½ a0. In experiments [3] r p = 0.4 ¹m, N p = 

5¢107 cm¡3, and ap = 13.6 ¹m; thus, a p/r p= a0/r 

0= 34. The results of equation (3) for the 

spherically symmetric case (k = 2) show that for 

the smaller charge z p ² Z pe 2/r DT < a 3 0/3 of a 

small particle r 0 ½ a 0; the charge, ¯eld, and 

potential distributions are given by expressions [6]: 

 

The expressions 10 are still of use for the points far 

from a dust particle surface (at r 0+ 3r 2 0/a 3 0 > r 

< a 0) when the charge is high z p > a 3 0/3. The 

variation from these expressions takes place close 

to a surface (r 0< r 0+ 3r 2 0/a 3 0), where a sharp 

fall of z (r), E (r), and’ (r) takes place (Figure 2). 

Otherwise, at the high charge of a dust particle, the 

Debye atom has some charged core close to a dust 

particle’s surface. The charge of a dust particle 

together with the core is equal to z core ² a 3 0/3. 

The screening of this residual charge takes place at 

a large distance r ¹ a0. The high charge condition z 

p ² Z pe 2/r DT > z core can be written in the form 
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However, calculations show (see Figure 2) that the 

dust particle charge in a thermal balance (Z p = 

286, z p = 0.156) should be smaller than the value 

(Z p º 500) measured by [3]. Hence, either the 

measurements of plasma parameters are not exact, 

or the charge of dust particles in experiments [3] is 

nonequilibrium (for details, see [18]). 

Debye atom in plasma: 

In the case ± 6= 0, when the charged cloud consists 

of particles of both signs, the Debye atom radius, as 

before, is determined as the distance (r = a 0) at 

which the charge of a dust particle is completely 

compensated by plasma charges (E (a 0) = 0). As in 

the case ± = 0, the Debye atom radius is equal to 

half of the average distance between dust particles 

a 0= ap/r D ² (N ¡1=3 p /2r D). If ± = 1, one isolated 

dust particle in an innate volume of V.A. Rudenko, 

S.I. Yakovenko / Central European Journal of 

Physics 2(1) 2004 35{66 41 plasma can be 

considered. If ±! 1 the Debye atom radius tends to 

inanity: a0! 1. This is because the ¯note charge of a 

particle z 0 can be completely compensated by a 

quasimetric plasma only at its innate sizes. If ± < 1, 

the Debye atom radius is ¯note. Electronic and 

ionic dimensionless charges contained in a charged 

cloud are determined by expressions: 

 

The quantity ±1 ² z 0i/z 0e gives the relation of a 

free ion charge in Debye atom to an electron 

charge. Generally speaking, ±1 should be a 

function of the parameters ±, a0 and ’0. However, 

when the main contribution to integration (11) is 

the area of a small potential’(r) ½ 1, it is possible to 

put ±1 º ±. Figure 3 illustrates the dependencies of 

z 0e, z 0i, and ±1 on ±. In the results presented in 

Figure 3, the value of a0 for deferent values of ± 

was chosen as large as possible for the radius of a 

dust particle corresponding to the experiments of 

Forte et al. [3]: r 0= r p/r D= 2.23¢10¡22. This was 

carried out by "test ¯ring": when the value of a0 

was chosen greater than that in Figure 3, the 

particle charge becomes innately large (z (r 0)! 1). 

The obtained dependencies z (r) and’ (r) (see 

Figure 4) were used to determine z 0= z (r 0) and 

’0=’ (r 0) at r 0 = 0.1 in the Debye molecule 

simulations presented below. The number of both 

positive and negative charge, z 0i and z 0e, in the 

cloud grows with ± because of the increase of the 

Debye atom volume (see Figure 3). At the same 

time, the uncompensated charge z 0= z 0e¡ z 0i 

does not vary with changing ±. At the considered 

parameters, we have ±1 º ±. As well as in the case ± 

= 0, at the given value r 0, the size a 0 cannot be 

innately large when a particle charge z 0 is innately 

high. The sharp fall of z (r), E (r), and’(r) as 

functions of r, caused by charge screening, takes 

place at distance (r¡ r 0) ¹ 1/E0 from a dust particle 

surface when value E0 = z 0/r 2 0 is high (see 

Figure 4). Thus, the size a 0 is limited by some 

value a0max ² a 0(E0! 1). This limiting value 

increases logarithmically for ±! 1: 

 

Since a Debye atom has a core screening the charge 

of the dust particle, we cannot ascribe the 

unscreened value of the charge to the dust particle 

while considering the interaction of Debye atoms. 

About the character of dust 

particles’ interaction 

 

Here d is the distance between dust particles and z 

eff (d)=E(d)¢d 2 is a total charge that is taking 

place inside a sphere of radius d around of a dust 

particle. This is an uncompensated charge of a dust 

particle. Due to quasineutrality of the Debye atom, 

one has z eff (r ) ¶ 0 at r ¶ r 0. The charges of the 

same sign repel each other: zeff (d)zp ¶ 0. The 

polarization of charged clouds is necessary for 

attractive forces. The number of negative charges 

should increase on the axis of a Debye molecule 

due to polarization if attractive forces take place. 

The interaction of charged planes 

The Poisson-Boltzmann equation (4) in a °at case 

(k=0) can be solved in quadratures. It obtains the 

interaction force of planes and obtains an accurate 

numerical solution of the Poisson - Boltzmann 

equation near the surface of a dust particle. This 

shows that the charged planes (both planes 

surrounded by a cloud of charges of the same sign, 

and planes located in the plasma) repulse each 

other [2], [20]. For an illustration we shall consider 

the case ± = 0 to get simple analytical expressions. 

It is useful for an estimation of the necessary 

accuracy of calculations of a ¯eld and a potential 

near the surface of a dust particle. Consider the 

electrostatic pressure on the charged conducting 

plane, which is located between two conducting 

planes (left and right). The planes are under the 

potential ’0 (see Figure 5). One of the planes can be 

removed to an in¯nite distance if necessary. The 
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integration of the Poisson-Boltzmann equation for a 

plane case gives [18], [20]: 

 

Here x is the distance from the central plane, which 

for simplicity is treated as in¯nitely thin; ’1 is the 

potential value in a point x = a 0, where the ¯eld 

intensity is equal to zero. Value a0 is equal to half 

the distance between planes if the density of 

charges on the planes is equal. The potential at the 

left side and on the right side of the conducting 

plane is identical, ’(¡ 0) = ’(+0) = ’0. But a ¯eld 

intensity on a surface of the plane at the left side E 

(¡ 0) ² E01 and at the right-side E (+0) ² E02 diver 

because the distance from the central plane to the 

left plane 2a01 and to the right plane 2a 02 diver. 

Thus, an electrostatic pressure on a plane is: 

The size a 0 is the monotonously falling function of 

E1. If, for example, distance to the left plane 2a 01 

is more than the distance up to the right plane 2a02; 

we have E01 > E02 and p < 0. Otherwise, the 

resulting pressure force is directed to the most 

removed plane. In particular, if we remove one of 

planes to an innate distance, two planes will 

repulse. Thus, the attraction of dust particles can 

arise only in a geometry that is not °at. 3.2.3 

Accuracy of the potential calculation near the 

surface in the numerical integration of the Poisson-

Boltzmann equation, the value of the ¯eld intensity 

is determined in the grid points of a deference 

scheme. The value E0, determined approximately, 

corresponds to a ¯eld value some distance from a 

dust particle surface, of the order of a grid step. Let 

us estimate the error of calculated pressure. The 

relative deference of pressure determined at 

distances x and {x from a plane is given in °at 

geometry by the expression 

 

As one can see in Figure 6, if the potential of a 

plane is not small (’0 ¾ 1), even on small distances 

x ¹ 0.01, the value ¢p/p is in the approximate range 

of tens percent. At the same time, the deference of 

potentials at the left and on the right sides (’ (¡ x) 

¡’(x)) is practically equal to zero. Otherwise, the 

very high accuracy of calculation of the potential 

derivative near a dust particle surface requires 

numerical integration. Therefore, it demands a very 

small grid step near the surface. Distances between 

dust particles much exceeding their diameter are of 

the most intersest. At the same time, the method 

used for the numerical integration of the 

PoissonBoltzmann equation should provide the 

maximal accuracy in the area near the surface of 

dust particles for an exact calculation of force on a 

dust particle. It is dicot to achieve scient accuracy 

in the calculation of force on small dust particles in 

the usual systems of coordinates. 

The method of a two-centre 

problem solution 

We used orthogonal coordinates constructed based 

on a known Cassini oval for a special case. The 

relationship between variables u and v, specifying a 

point on Cassini oval with the Cartesian 

coordinates in quadrant x>0, y>0, is determined by 

the following expressions: 

 

The oval focus is located in point (d/2,0). Variable 

1>u>-1 is some analogue of a radial variable. At 

us>0 it represents an oval with a waist, and at u > 

0.65 the oval has the ellipsoidal form. Variable 

¼>v>0 is an analogue of a corner in polar 

coordinates. At v=0 points lay on a beam (d/2,1) on 

the x-axis, at v = ¼, the points come close to a 

corner formed by a line segment (0, d/2) on the 

abscissa and beam (0,1) on the ordinate. The 

character of coordinate lines is illustrated in Figure 

7. Use of coordinate (13) gives the following 

important advantages. First, the family of Cassini 

ovals qualitatively corresponds to an equipotential 

curve for two equally charged particles that are 

located in oval focuses. Second, the domain of the 

solution of equation (3) in these coordinates 

becomes rectangular. Third, the density of ovals is 

exponentially condensed to a surface of a dust 

particle. It makes an opportunity to use a uniform 

mesh even at the large distances between particles 

of small sizes. 

On the method of numerical 

simulation 

Without going into details, let us discuss the basic 

items of the numerical simulation method. The 

Cassini coordinates are especially convenient for 

use in a situation in which the radius of dust 

particles r 0 is much less than the Debye radius r 0 

½ 1, and the radius of the Debye atom r 0 ½ a 0. It 
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is convenient to dine the potential value ’0 on small 

ovals close to circles. At the same time, the cloud 

of charges covering dust particles is described by 

an elliptical oval. It is convenient to set the ¯eld 

value to zero at this oval. The surface of a dust 

particle and the surface corresponding to the 

boundary of a Debye molecule are described in 

coordinate (13) by constants: 

 

The Poisson-Boltzmann equation (3) with 

boundary conditions (14) and (15) was solved by a 

Gauss-Newton method of iterations with use of the 

software package MATLAB. Figure 8 shows plots 

of an equipotential surface in two coordinate 

systems. The three-dimensional coordinates formed 

by rotation of °at coordinates (13) around the x -

axes are used to calculate the charge (5) and the 

interaction forces (8) of dust particles. The 

interaction energy of dust particles was calculated 

using the formula 

 

Results of calculations 

The calculations were carried out for such 

parameters ’0, r 0, and a0 that correspond to an 

isolated Debye atom when d ¾ a 0. For this 

purpose, the spherically symmetric problem (9) 

was solved and the potential ’0on a particle surface 

for given r 0 and a 0was calculated. Then the two-

cantered problem for d =10a0 was solved using 

values ’0, r 0, and a 0. The results for the 

spherically-symmetric problem and for the two-

centre problem coincided with high accuracy. 

Smaller values of d were used in the further series 

of calculations. In a series of calculations shown in 

Figure 9, we were guided by plasma parameters of 

experiments by [3], and have put a 0 = 0.755. The 

calculations show that the area at large distances d ¹ 

2a0 is most interesting. Therefore, we have taken 

the radius of a dust particle r 0 = 0.1 ¯vet times 

greater than in the experiment. Accordingly, 

potential ’0= 1.16, taken from the one-centre 

problem solution for r 0 = 0.1, was smaller than the 

potential on a surface of a dust particle of small 

radius (’0 = 6.5 at r 0 = r p/r D = 2.23¢10¡2). 

Otherwise, the small conducting ball was replaced 

by a conducting ball of greater size, with a charge 

partially compensated by charges of an electronic 

cloud. Such replacement is justice because the 

electrons situated near the dust particle surface are 

weakly polarized (see below). 

Interaction force dependence on dust particle 

separation 

A series of calculations with the given values ’0, r 

0, and a 0 were carried out for deferent values of d. 

The dust particle charge z 0 is also a function of d 

in this case. Additional calculations were carried 

out with changed ’0 or a 0 to make the dust particle 

charge z 0 not dependent on d. The calculations 

have shown that the repulsion takes place at small 

distances between particles d¹r 0. It is not in accord 

with results of numerical calculations of [17], in 

which the dust particle attraction took place at d ¹ r 

0. Apparently, there was some error in the 

calculations of electric ¯eld near the surface of the 

dust particle. The resulting force is very sensitive to 

such error (see 3.2). Actually, the charged cloud is 

weakly polarized close to the surface of a dust 

particle, so the repulsion force prevails over the 

polarizing attraction force at small distances. 

Figure 9 show that the dust particles’ interaction 

force have zero value at equilibrium point d= d 0 º 

1.3 under the conditions of [3]. The position of the 

equilibrium point d = d 0, in which a sign of 

interaction force changed, is less than the average 

distance between dust particles (2a0 = 1.5). The 

value d 0 weakly depends on which quantity (’0, 

a0, or z 0, a0) was kept constant in calculations at 

deferent d. The change a0 (at constant z 0 46 V.A. 

Rudenko, S.I. Yakovenko / Central European 

Journal of Physics 2(1) 2004 35{66 and ’0) 

nuances the value of d 0 some more. Apparently, it 

is better to make z 0= cost by changing the dust 

particle potential ’0 = ’0 (d). It is impossible to 

consider a problem binary when d ¾ a0. The 

essential repulsion from other dust particles takes 

place if the distance between dust particles is large 

(d > 2a 0) (see a Figure 1). Therefore, we present 

the results of calculations only for d < 4a 0. One 

can estimate the electrostatic pressure compressing 

a dust particle gas as a funkton of an attraction 

force of dust particles F (2a 0) at average distance 

2a0 

Note, however, that the comparison of electrostatic 

pressure on dust particle gas with gas-kinetic 

electronic pressure does not allow one to make any 

essential conclusions. Electrons are not free; they 

are in an electrical ¯eld of dust particles. At the 

same time, it is possible to assume that the gas of 

Debye atoms in a mix with inert gas should show 

the tendency to compression under the conditions 

of the experiments. Such a situation was considered 

by [12]. Consideration of the impudence of Debye 

atoms’ interaction on the gas-kinetic property of 
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dusty plasma is outside the framework of this 

paper. 

Nuance of the Debye atom size: 

The results of some series of calculations for 

various values a 0 are presented on Figure 10. The 

calculations have shown that the attraction of the 

dust particles takes place only at a 0 µ 1. Already at 

a 0 > 1.12, the equilibrium point d 0 goes to large 

distance d 0 > 4a 0. It is possible to rewrite the 

condition a 0= ap/r D < 1 for the dimensional 

quantity, 

On the effect of a dust particle 

size: 

The small charged ball is replaced above with a 

ball of greater size and accordingly with a partially 

compensated charge. There is a natural question 

whether such a replacement is adequate. Some 

series of calculations were done with deferent 

values of r 0 and corespending values of ’0. The 

change in the results of the calculations is insignia 

if a dust particle radius is small in comparison with 

the radius of Debye atom a 0. For example, in a 

case a0 = 0.755 (see Figure 11) for r 0 = 0.1¥0.2 

(and for the choice of values of ’0 corresponding to 

the given r 0), the divergences in the equilibrium 

point d 0 = 1.28 is less than 2%, which corresponds 

to the available accuracy of calculations. The elect 

of the dust particle size becomes Signiant for r 0 > 

0.3a0. For r 0 > 0.4, the polarization-induced 

attraction decreases to such an extent that the 

distance to the force sign-reversal point becomes 

larger than the mean distance between particles (d 0 

> 2a0). Therefore, it is possible to conclude that the 

electrons placed at distance r º (0.3¥1) a 0 are 

involved in polarization. In this connection, it is 

dicot to hope for an analytical evaluation of 

attraction forces 

A Debye molecule in a plasma (± 6= 0): 

As in the case of ± = 0, the series of calculations 

were carried out to obtain the dependence of the 

interaction force of dust particles on distance d. 

The additional calculations were carried out with 

changed ’0 or a0 to make the dust particle charge z 

0 independent of d. As in the case of ± = 0, we 

chose the value of r 0 greater than the radius of the 

atomic core, thus simulating a dust particle by a 

conducting sphere of a larger size, with a charge 

partially compensated by the free charges from the 

shell of the Debye atom. Thus, the polarization of 

the core was disregarded. In the results shown in 

Figure 12, the size a0 for deferent values of ± 

corresponds to the extremely large charge of a dust 

particle with radius r p/r D = 2.23¢10¡2. This was 

done by test ¯ring: when the value of a 0 was 

greater than that given in Table 7, the particle 

charge obtained by solving Eq. (9) becomes 

innately large (z (r p/r D)! 1). The obtained 

dependencies z (r) and’ (r) were used for 

determining z 0 = z (r 0) and ’0 =’ (r 0), at r 0 = 

0.1. We did not get an evident attraction of dust 

particles at 1-± ½ 1 in the range of parameter d < 

2a 0that corresponds to binary interaction (Figures 

12a, 12b). The attraction arises when an 

appreciable share of a positive charge of plasma is 

carried with dust particles (at ± < 0.7, see Figures 

12c, 12d). The maximum attraction force and the 

maximum depth of a potential well arises when ± = 

0. The decrease of an attraction force with growth 

of ± has a simple explanation. As follows from the 

above calculations for ± = 0, the attraction forces 

arise because electrons accumulate near the centre 

between dust particles and provide an attraction of 

positively charged dust particles to the centre of 

Debye molecule. This attraction force exceeds the 

repulsion force of dust particles because the Debye 

atom core screens the dust particle charge. At 1- ± 

½ 1 the elect of a charge screening by the core is 

the same. However, the attraction force essentially 

weakens because not only electrons but also 

positive charges are accumulated near the centre of 

the Debye molecule. In case of a small value of a 

plasma charge ± ½ 1, the potential well depth is 

rather great. It is about several values of gas 

temperature. However, the binary consideration is 

limited in size of the order of magnitude of a 

diameter of Debye atom 2a0 (N ¡1=3 p > 2a 0r 

On the analytical approaches: 

 The above conclusion concerning the 

absence of attraction for ±! 1 contradicts the results 

of recent approximate analyses by [5], [11] (see 

Figure 12a). It follows from these analyses that the 

attraction of dust particles takes place at ± = 1 and 

at interparticle separation d > (31=2+1) /21=2 = 

1.93 if the linearized Poisson-Boltzmann equation 

is used. This result is surprising. In the linear 

approximation a potential in a point r is determined 

by the sum of the screened potentials of point 

charges located in points r 

Inaccuracy of the results of [5] and [11] is 

apparently associated with the following 

circumstance. Gerasimov and Sinkevich [5] and 

Ivanov [11] sum the attraction force acting on an 

electronic cloud of the ¯rest dust particle from the 

second dust particle, and force (19) acting directly 

on a ¯rest dust particle. Such addition would be 

justice if the charged clouds of dust particles were 

rigidly connected with the dust particle through 

some other forces. However, there are no 

extraneous rigid forces in the problem under 

consideration. The presence of the attraction force 

of the electron shell of one charge to another 

charge only indicates that the given comigration of 

the charge shell is not in equilibrium. This force of 
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attraction must lead to polarization of the charge 

shell. Nevertheless, the polarization was 

disregarded by [5] and [11]. There are no grounds 

to add this polarizing force to the force acting 

directly on the dust particle. An analogous situation 

is the polarizing attraction of ordinary atoms. As is 

well known, for spherically symmetric atoms the 

polarizing interaction has no place in ¯restorder 

perturbation theory. It arises only in second-order 

perturbation theory, when the polarization of an 

electronic shell of one atom by charges of other 

atom is taken into account. An ordinary atom diver 

from a Debye atom only by the fact that its 

electrons move according to quantum-mechanical 

and not classical laws. The nature of 

polarizationinduced forces is the same for an 

ordinary and a Debye atom. 

Dust particles in nuclear-pumped plasma 

Experimental results: 

Forte et al. [4] reported on the collective 

phenomena observed in dust plasma formed 

because of dense gas ionization by nuclear ¯scion 

fragments. In one of these experiments, the plasma 

was excited by Cf252 ¯scion fragments, and in the 

other by-products of the Ce141¯-decay. We will 

concentrate on the latter data. The dust was 

composed of Ce02 particles with an average radius 

of r p = 0.5 ¹m. The gravity force was compensated 

by applying an external electric ¯eld with a strength 

of 10 V/cm. The system featured large regions of 

particles levitating over several minutes, exhibiting 

a short-range order in the spatial structure. 50 V.A. 

Rudenko, S.I. Yakovenko / Central European 

Journal of Physics 2(1) 2004 35{66 Measurements 

performed using a digitized video image of the 

structure of these zones shows the density of 

particles within a 150-¹m-thick °at layer was 

10¡5¹m¡2. Accordingle, the volume density of dust 

particles was N p ¹ 6¢104 cm¡3. The average 

charge of these particles, determined from the 

balance of gravitational and electrical forces, was Z 

p º 400. The density of the charge of dust particles 

was Z pan p ¹ 2.4¢107 cm¡3. The ion density, 

determined by measuring the current between 

electrodes and using the known ion drift velocity, 

was N I ¹ 108 cm¡3. The attraction of dust particles 

causes the collective phenomena in the 

nuclearpumped plasma under consideration. As 

was stated above, the attraction of dust particles 

takes place if the charges of one sign are 

concentrated mainly on dust particles. Now we will 

check whether this condition is filled [19]. 

The charge of dust particles: 

A negative charge on the dust particle surface may 

arise from a deference between average velocities 

of electrons and ions. This phenomenon is well 

known in physical electronics. Assuming the 

Maxwell velocity distribution and equating the °us 

of ions to the particle surface N etui to that of 

electrons N e ¢use ¢exp (-ea./T e), one obtains:  

 

Here, Up is the dust particle potential; up = 

(T/4¼mi) 1=2 and use = (The/4¼me) 1=2are the 

average projections of the velocities of ions and 

electrons onto the axis perpendicular to particle 

surface; and the___14 and T are the electron and 

gas temperatures. Using this potential value, we 

may formally determine the charge of the particle: 

 

This estimate applies well to gas-discharge plasma, 

but may lead to considerable errors in the case of a 

plasma produced by a hard ionizing. Taking the 

electron temperature equal to the room temperature 

(T e ¹ T = 300 K = 0.026 eV), we obtain Z p ¹ 100. 

This estimate is about one-fourth of the value 

obtained from the experimental data (Z p º 400). 

Apparently, the discrepancy is related to the fact 

that the secondary electron adheres to a dust 

particle before it is cooled in collisions with gas 

molecules. 

Density of ions: 

The charge-balance equation and the quasi-

neutrality condition describe the number densites of 

ions and electrons in the dust plasma. In the case 

under consideration, these relationships can be 

written as follows: 

 

Here ®d is the dissociative recombination 

coincident and ®L is the Langevin recombination 

coincident; G is the ionization rate per unit volume. 

Under substitutionary conditions (don I/dt = 0), we 

may solve the above quadratic equation and present 

the ratio of the ion density N I to the charge density 

on a dust particle Z pan p in the following form: 

 

Here, a = ®L/ (Z pad) is a parameter characterizing 

the ratio of the rates of the Langevin and 

dissociative recombination (for a > 1, 
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recombination on the dust particles dominates), and 

g = G=(®Lapp) is the reduced rate of ionization. 

Note an important circumstance: for an ionization 

rate satisfying the condition g = 1 or G = ®L¢Z p 

¢N p, all the negative charge in the system is 

concentrated on the dust particles (N e = 0, N I= Z 

pan p) while the gas contains only positive ions. In 

the experiments under consideration, the 

radioactive source provided ionization at a rate 

corresponding to 109¯-decays per second in a 

volume of 20 cm3. Assuming that every ¯-decay 

event liberates an energy of Ef = 138 keV, we 

obtain the following estimate for the ionization rate 

per unit volume: 

 

Here Per = 36 eV is the energy necessary for the 

ion pair production in air. The coincident of ion 

recombination on dust particles according to 

Langevin is ®L = 4¼Z pe 2bi ¹ 0.064¢cm3 s¡1. 

This estimate is obtained for the ion mobility bi= 2/ 

(men ¢k IA), where k IA = (4/3) ¢4¢10¡16 cm2 ¢ 

(8T /¼¢mi) 1=2 ¹ 2.5¢10¡11 cm/s is the rate of 

collisions between ions and air molecules, 

considered as hard spheres with a cross section of 

4¢10¡16 cm2. The ion density and the share of the 

dust particles charge ± = Z pan p=N I can be 

estimated using (20). We use the dissociative 

recombination coincident equal to ®d ¹ 3¢10¡7 

cm3/s and take into account that recombination on 

the dust particles dominates: a = ®L/ (Z pad) ¹ 530. 

The estimated number density of ions N I ¹ 0.5¢108 

cm¡3 agrees with the experimental values. 

Moreover, expression (20) shows that, for the 

parameters under consideration, the negative 

charges are concentrated appreciably on dust 

particles, ± = Z pan p=N I º 0.5. Thus, the attraction 

of dust particles can take place in these 

experiments. 

Conclusion 

Let us summarize the results of the above 

consideration. (1) A Debye atom consists of a 

charged dust particle and shell (cloud of charges). 

For the large charge of the dust particle, the high-

density region (core) of the electron cloud screens 

considerably the large charge of the dust particle 

near its surface. In 52 V.A. Rudenko, S.I. 

Yakovenko / Central European Journal of Physics 

2(1) 2004 35{66 this connection, while considering 

the interaction of Debye atoms, we cannot ascribe 

the unscreened value of charge to a dust particle. 

The dust particle charge screened by the core has a 

universal value determined by the distance between 

dust particles. The electron shell of the Debye atom 

screens it. (2) Attractive forces are associated with 

the polarization of charge shells of Debye atoms. 

The force of attraction is formed by polarization of 

a large fraction of electrons of the charge shell. The 

polarization of the core is insignia. (3) Forces of 

attraction between dust particles emerge at a 

comparatively large distance, approximately equal 

to the mean separation between dust particles. In 

this case, the Debye radius must be approximately 

equal to half the mean distance between dust 

particles. (4) Attraction takes place if like charges 

are concentrated predominantly on dust particlues. 

If dust particles carry a small fraction of the charge 

of some polarity, repulsion is observed at any 

distance. (5) The electrostatic forces of interaction 

between dust particles vanish when a certain 

relation between the electron density and the 

density of dust particles converges. In this case, the 

Debye "liquid" is in equilibrium. Since attractive 

forces appear at large distances, the problem of the 

formation of dust liquids and crystals can be solved 

correctly only if many-particle interactions are 

taken into account. However, we can draw the 

following two conclusions concerning the criteria 

for the emergence of collective phenomena based 

on the results presented by us here: (a) in the case 

of a thermionic plasma, the electron density must 

be such that the Debye radius is approximately 

equal to half the mean value between dust particles; 

(b) for a gas-discharge or a nuclear-excited plasma, 

the properties of the ionization source and the 

density of dust particles must be matched so that 

the main (usually negative) charge is carried by 

dust particles. 

Acknowledgments 

The authors are grateful to A.N. Tkachev for 

fruitful discussion of the results of the present work 

and also Yu. I. Setsuko for discussion of 

computational aspects of the problem. 

References 

[1] W.R. Bowen and A.O. Sarif: \Long-range 

electrostatic attraction between like-charge spheres 

in a charged pore\, Nature (London), Vol. 393(18), 

(1998), pp. 663{665.  

[2] B. Derain and L. Landau: \Theory of Stability 

of Strongly Charged Lyophobic Sols and the 

Adhesion of Strongly Charged Particles in 

Solutions of Electrolytes\, Acta Physicochemical 

U.R.S.S., Vol. 14(6), (1941), pp. 633{662. V.A. 

Rudenko, S.I. Yakovenko / Central European 

Journal of Physics 2(1) 2004 35{66 53  

[3] V.E. Forte, A.G. Nemerov, O.F. Petrov, A.A. 

Samarian and A.V. Chernihiv \Hardly imperfect 

classical thermal plasma: experimental study of 

ordered structures of macroscopic particles\, HTC, 

Vol. 111(2), (1997), pp. 467{477 (in Russian).  



 ISSN NO: 9726-001X 

Volume 12 Issue 02 2024 

 

 

 
 

78 

[4] V.E. Forte, V.I. Vladimirov, L.V. Depurative, 

V.I. Molotov, A.G. Nemerov, V.A. Rakove, V.M. 

Torchinsky and A.V. Hudak: \Ordered structures in 

nuclear pumped plasma\, Do lady Akademie Neuk, 

Vol. 336(2), (1999), pp. 184{187 (in Russian).  

[5] D.N. Gerasimov and O.A. Sinkevich: \Forming 

of ordered structures in thermal dusty plasma\, 

Teplizumab Vaisakhi Temperature, Vol. 37(6), 

(1999), pp. 853{857 (in Russian).  

[6] E.G. Gibson: \Ionization Phenomena in a Gas-

Particle Plasma\, The Phys. of Fluids. Vol. 9(12), 

(1966), pp. 2389{2399.  

[7] V.A. Rudenko and S.I. Yakovenko: \The 

Interaction between Charged Dust Particles 

Calculated in Cassini Coordinates\, Technical 

Physics Letters, Vol. 28(5), (2002), pp. 422{426.  

[8] V.A. Rudenko and S.I. Yakovenko: \The 

Interaction between Charged Dust Particles in 

Plasma\, Technical Physics Letters, Vol. 28(11), 

(2002), pp. 919{922.  

[9] V.A. Rudenko and S.I. Yakovenko: \Interaction 

of Charged Dust Particles in Clouds of 

Thermodynamically Equilibrium Charges\, Journal 

of Experimental and Theoretical Physics, Vol. 

95(5), (2002), pp. 864{877.  

[10] S. Ishimaru: \Strongly coupled plasmas: high-

density classical plasmas and degenerate electron 

liquids\, Rev. Mod. Phys., Vol. 54, (1982), pp. 

1017{1059.  

[11] A.S. Ivanov: \Polarization’s Interaction and 

bound States of like charged Particles in Plasma\, 

Physics Letters A., Vol. 290, (2001), pp. 304{308.  

[12] S.A. Mayorov, A.N. Tkachev and S.I. 

Yakovenko: \Metastable state of Supercooled 

Plasma\, Physical Scripta Vol. 51, (1995), pp. 

498{516.  

[13] J.C. New: \Wall-Mediated Forces between 

Like-Charge Bodies in an Electrolyte\, Phys. Raw. 

E., Vol. 82(5), (1999), pp. 1072{1074.  

[14] M. Tokuyama: \Elective forces between highly 

charged colloidal suspensions\, Phys. Rev. E., Vol. 

59(3), (1999), pp. R2550{R2553.  

[15] A.N. Tkachev and S.I. Yakovenko: \Electron 

clouds of charged macroparticles\, Tech. Phys., 

Vol. 44, (1999), pp. 48{52  

[16] N.N. Stanovich: \Dust plasma crystals, drops 

and clouds\, USPHS Finishes Neuk, Vol. 167(1), 

(1997), pp. 57{99 (in Russian).  

[17] S.I. Yakovenko: \About Interaction of Charged 

Particles. Debye Molecule\, Technical Physics 

Letters, Vol. 25, (1999), pp. 670{672.  

[18] S.I. Yakovenko: \Plane thermionic clouds and 

charge of dust particles\, Technical Physics Letters, 

Vol. 26, (2000), pp. 337{341.  

[19] S.I. Yakovenko: \Ion Recombination on Dust 

Particles in a Dense Gas Plasma Excited by a Hard 

Ionizing Factor\, Technical Physics Letters, Vol. 

26, (2000), pp. 1045{1048.  

[20] S.I. Yakovenko: \The Interaction of Charged 

Planes in an Electron Cloud and Plasma\, Technical 

Physics Letters, Vol. 27(5), (2001), pp. 389{393. 


